On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers

نویسندگان

  • Cahit Köme
  • Yasin Yazlik
چکیده

In this paper, we present new upper and lower bounds for the spectral norms of the r-circulant matrices [Formula: see text] and [Formula: see text] whose entries are the biperiodic Fibonacci and biperiodic Lucas numbers, respectively. Finally, we obtain lower and upper bounds for the spectral norms of Kronecker and Hadamard products of Q and L matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Spectral Norms of r-Circulant Matrices with the k-Fibonacci and k-Lucas Numbers

Abstract In this paper, we consider the k -Fibonacci and k -Lucas sequences {Fk,n}n∈N and {Lk,n}n∈N . Let A = Cr(Fk,0, Fk,1, · · · , Fk,n−1) and B = Cr(Lk,0, Lk,1, · · · , Lk,n−1) be r -circulant matrices. Afterwards, we give upper and lower bounds for the spectral norms of matrices A and B. In addition, we obtain some bounds for the spectral norms of Hadamard and Kronecker products of these ma...

متن کامل

Spectral norms of circulant-type matrices involving some well-known numbers

In this paper, we investigate spectral norms for circulant-type matrices, including circulant, skewcirculant and g-circulant matrices. The entries are product of binomial coefficients with Fibonacci numbers and Lucas numbers, respectively. We obtain identity estimations for these spectral norms. Employing these approaches, we list some numerical tests to verify our results.

متن کامل

On the Norms of Circulant Matrices with the (k,h)-Fibonacci and (k,h)-Lucas Numbers

In this paper, we give upper and lower bounds for the spectral norms of circulant matrices A n = Circ(F n−1) and B n = Circ(L (k,h) n and L (k,h) n are the (k, h)-Fibonacci and (k, h)-Lucas numbers, then we obtain some bounds for the spectral norms of Kronecker and Hadamard products of these matrices.

متن کامل

An Application of Matricial Fibonacci Identities to the Computation of Spectral Norms

Among the most intensively studied integer sequences are the Fibonacci and Lucas sequences. Both are instances of second order recurrences [8], both satisfying sk−2+sk−1 = sk for all integers k, but where the fibonacci sequence (fi) begins with f0 = 0 and f1 = 1, the Lucas sequence (li) has l0 = 2 and l1 = 1. Several authors have recently been interested in the singular values of Toeplitz, circ...

متن کامل

On the Norms of Circulant Matrices with the Generalized Fibonacci and Lucas Numbers

Abstract. In this paper, firstly we define n×n circulant matrices U =Circ (U0, U1, . . . , Un−1), V =Circ (V0, . . . , Vn−1), T =Circ (T0, . . . , Tn−1) and S =Circ (S0, . . . , Sn−1), where {Un} and {Vn} are generalized Fibonacci and Lucas types second order linear recurrences, {Tn} and {Sn} are Tribonacci sequences with different initial conditions. After we study spectral noms of these matri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017