On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
نویسندگان
چکیده
In this paper, we present new upper and lower bounds for the spectral norms of the r-circulant matrices [Formula: see text] and [Formula: see text] whose entries are the biperiodic Fibonacci and biperiodic Lucas numbers, respectively. Finally, we obtain lower and upper bounds for the spectral norms of Kronecker and Hadamard products of Q and L matrices.
منابع مشابه
On the Spectral Norms of r-Circulant Matrices with the k-Fibonacci and k-Lucas Numbers
Abstract In this paper, we consider the k -Fibonacci and k -Lucas sequences {Fk,n}n∈N and {Lk,n}n∈N . Let A = Cr(Fk,0, Fk,1, · · · , Fk,n−1) and B = Cr(Lk,0, Lk,1, · · · , Lk,n−1) be r -circulant matrices. Afterwards, we give upper and lower bounds for the spectral norms of matrices A and B. In addition, we obtain some bounds for the spectral norms of Hadamard and Kronecker products of these ma...
متن کاملSpectral norms of circulant-type matrices involving some well-known numbers
In this paper, we investigate spectral norms for circulant-type matrices, including circulant, skewcirculant and g-circulant matrices. The entries are product of binomial coefficients with Fibonacci numbers and Lucas numbers, respectively. We obtain identity estimations for these spectral norms. Employing these approaches, we list some numerical tests to verify our results.
متن کاملOn the Norms of Circulant Matrices with the (k,h)-Fibonacci and (k,h)-Lucas Numbers
In this paper, we give upper and lower bounds for the spectral norms of circulant matrices A n = Circ(F n−1) and B n = Circ(L (k,h) n and L (k,h) n are the (k, h)-Fibonacci and (k, h)-Lucas numbers, then we obtain some bounds for the spectral norms of Kronecker and Hadamard products of these matrices.
متن کاملAn Application of Matricial Fibonacci Identities to the Computation of Spectral Norms
Among the most intensively studied integer sequences are the Fibonacci and Lucas sequences. Both are instances of second order recurrences [8], both satisfying sk−2+sk−1 = sk for all integers k, but where the fibonacci sequence (fi) begins with f0 = 0 and f1 = 1, the Lucas sequence (li) has l0 = 2 and l1 = 1. Several authors have recently been interested in the singular values of Toeplitz, circ...
متن کاملOn the Norms of Circulant Matrices with the Generalized Fibonacci and Lucas Numbers
Abstract. In this paper, firstly we define n×n circulant matrices U =Circ (U0, U1, . . . , Un−1), V =Circ (V0, . . . , Vn−1), T =Circ (T0, . . . , Tn−1) and S =Circ (S0, . . . , Sn−1), where {Un} and {Vn} are generalized Fibonacci and Lucas types second order linear recurrences, {Tn} and {Sn} are Tribonacci sequences with different initial conditions. After we study spectral noms of these matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017